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LETTER TO THE EDITOR 

Finite-temperature effects in a Roberston-Walker universe 

Gerard Kennedy 
Department of Theoretical Physics, The University of Manchester, Manchester M13 9PL, 
UK 

Received 20 February 1978 

Abstract. The concept of thermal equilibrium in a Robertson-Walker universe is dis- 
cussed. A finite-temperature Green function is constructed and used to calculate 
A recognised static form results. 

1. Introduction 

Although our usual concepts of thermal equilibrium require us to restrict the space- 
time, on which a thermal gas propagates, to be static (or, more precisely, stationary) 
(Dowker and Critchley 1977, Gibbons and Perry 1977, Dowker and Kennedy 1978), 
Israel (1972) has found equilibrium distribution functions for massless particles when 
the space-time is merely conformally stationary. It has been mentioned by Gibbons 
and Perry (1977) that such an approach can be used in particular to define finite- 
temperature field theory on Robertson-Walker (RW) metrics. In the present Letter 
we shall illustrate this conformal method by calculating ( foo>so for a closed RW metric 
and try to indicate that this is not merely a technical exercise but does have physical 
significance. 

2. Finite-temperature Green function 

We start with the expression for the line element of the RW universe in the usual 
(co-moving) frame 

ds2 = dt2 - R 2 ( t )  du2  (1) 

where R( t )  is the usual radius function and du2  is the line element on the spatial S3. In 
its form (1) the metric is obviously not static but, as is well known (Hawking and Ellis 
1973), it is conformally related to the metric of the (static) Einstein universe, 

ds2= ( y ) 2 ( d r 2 - a 2  du2)  

where the Einstein time, 7, is related to the RW time, t, by 

dt R(t)  
d7 a ' 

-=- 
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For simplicity we consider a massless conformally invariant scalar field pro- 
pagating on the RW metric. This field satisfies 

(O+$R)4(x)=O, (4 ) 

(O+$R)G(x, x ’ ) =  S (x ,  x ‘ ) .  (5 1 
and the corresponding Green function satisfies 

We refer to Dowker and Critchley (1977) for notation. 

formation (2), the Green functions in the two metrics are related by 
Because of our choice of a conformal coupling, under the conformal trans- 

with x = (t, x), x’ = (T, x), and G and G refer to the RW and Einstein metrics respec- 
tively. 

The massless finite-temperature Green function for a scalar gas on an Einstein 
universe of radius U was given in Dowker and Critchley (1977) as an image sum of 
zero-temperature Green functions, 

30 

eoo(f, 2’) = Gm(.f, 2’ - imPoA) 
m=--03 

where 

is the zero-temperature Green function, with afi = (T - T’)* - (s + 2 ~ n a ) ~  -ie, s the 
geodesic distance on S3, A the time-like unit vector (1, 0, 0, 0), and Po= &To)-’. We 
would now propose to use (6) with (7) to define a finite-temperature Green function 
on the RW metric. Before doing this, however, we shall discuss some of the physics 
involved. 

If we write any Green function as 

with lout) and /in) any states, then, since under the conformal transformation (2) (see 
Parker 1973 for further details on conformal transformations) 

the relation (6 )  holds only if the lout) and /in) states appearing in G(x, x ’ )  are identical 
to those of &(f, 2’) (up to a normalisation factor). We could say that the lout) and Jin) 
states used to define the Green functions are conformally invariant. 

For the particular case of the finite-temperature Green function (7) we have 

Goo(2, 2’) = i(T{d(f)4(f’)})oo (11) 
where 
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Tr denoting the usual Fock space trace and H the time-independent second-quantised 
Hamiltonian. Before using our proposed finite-temperature RW Green function we 
must therefore verify that the vacuum and many-particle states defined by a mode 
expansion of the scalar field in Einstein space correspond under the transformation 
(10) to vacuum and many-particle states, respectively, in the RW universe. This point 
has been discussed by Ford (1975) (see also Parker 1969). Because of our choice of 
conformal coupling, it turns out that the above one-one correspondence exists, 
resulting in time-independent creation and annihilation operators for the quanta in 
the RW metric. This in turn means that there is no particle creation induced by the 
expansion. This would not be true if the conformally invariant equation (4) were 
replaced by the minimal one; in this case particle creation would occur because the 
modes would not have simple transformation properties, and a recognised equilibrium 
configuration in Einstein space would not be recognisable as such in RW space. 

We therefore define our finite-temperature Green function in a RW universe as the 
averaged sum of many-particle state matrix elements of the time ordered product, the 
averaging being the usual statistical averaging in the conformally related static 
Einstein universe with a time-independent Hamiltonian as in (12). That is 

With our finite-temperature Green function defined as above we can proceed to 
calculate ( f'r;t),go. For the special case of a RW metric we have 

the dots denoting differentiation with respect to t. As is obvious from (7) and (8), (14) 
can be rewritten as a double sum over m and n of certain coincidence limits. For the 
moment we shall drop the m = 0 contribution to (7) and (14) since the divergencies of 
the coincidence limit of (14) reside solely in this zero-temperature part. Later we will 
simply add on any remaining finite contribution to ( f n ) m  after an appropriate renor- 
malisation of this zero-temperature quantity. 

The calculation of (14), excluding the m = 0 part, is straightforward and yields 

with 

and 

being the infinite space (Planckian) and correction (due to the compactness of S3) 
terms respectively. The p which appears here is 
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corresponding to the expected Tolman temperature arising from g, in (2) and 
describing the cooling of the gas due to expansion. 5 is the dimensionless parameter 

(18) 6 = rap;' = rR(t)P-' .  

It is immediately recognised that (15) is identical to the energy density obtained for a 
gas at temperature T in a static Einstein universe of radius R (Dowker and Critchley 
1977). 

It is interesting to note that the correct term can be written alternatively as 
V-'(F'+ ToS') or V-'(F'+ TS") where V = 2 r 2 R 3 ( t )  is the volume of S 3  and 

and 

If we choose the identification (19c) then the total entropy is the same as that obtained 
in the Einstein case (Dowker and Critchley 1977). This corresponds to Ehlers' (1971) 
requirement of zero entropy production for an equilibrium distribution function. 

Gso(x, x ' )  in (13) is not periodic in imaginary t nor in imaginary T. It is, however, 
approximately periodic in imaginary T with period Po if PoR @)/a  << 1, the satisfaction 
of this condition also implying that GPo(x, x ' )  will be approximately periodic in 
imaginary t with period p. This approximate periodicity would then correspond to the 
usual properties of thermal Green functions in static manifolds (Gibbons and Perry 
1977, Dowker 1977, Dowker and Kennedy 1978). We point out here that our 
condition for approximate periodicity is slightly different from that stated by Gibbons 
and Perry (1977). 

The surprising aspect of the result (15), (16), is that, even though the manifold is 
non-static, the energy density appears to mimic that of an 'instantaneous' static 
Einstein universe (Dowker and Critchley 1977). Alternatively one can view this fact 
as a cancellation of the extra differential operators in (14), due to the non-static nature 
of the metric, against the non-periodic parts of Gso(x, x ' ) .  This 'non-static in static's 
clothing' result strengthens our arguments supporting the form (13). 

The finite part of ( f r r > c c  is chosen to be that obtained by the point splitting of 
Bunch and Davies (1977) as 

The last term in this square bracket is just the partial Casimir term first calculated by 
Ford (1975) and, as in the Einstein case (Dowker and Critchley 1977), for large 6, 
corresponding to a high temperature T or a large radius R,  it can be shown that the 
correction term (166) tends to minus this partial Casimir density, while for small 6 it 
tends to minus the Planck density. (frf;,>r,',n is then obtained by taking the sum of (15) 
and (20). 
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4. Discussion 

L8 1 

We present the above as an example of how to define thermal equilibrium on 
non-static manifolds which are conformally static. The next step would be to use 
( Prr)’s”,” in Einstein’s equations, and try to solve the back reaction problem self- 
consistently leading to R (t) in terms of a, PO, and various other initial data. If ( f r t ) ; ;  

enjoyed the conformal transformation properties of its unrenormalised counterpart 
then this self-consistency would reduce to the scalar version of the case studied by 
Al’taie and Dowker (1978) for the Einstein universe, hence providing a relationship 
between the radius and (Tolman) temperature for the RW universe. The time depen- 
dence in R ( t )  would not be exhibited by this means. The presence of ( fn)Z  alters this 
conformal self-consistency argument, but one would expect that at high temperatures 
its effect would be small leading to the same qualitative behaviour as that obtained by 
Al’taie and Dowker (1978). 

After completion of this work the author’s attention was directed to a paper by 
Cooke (1977) in which similar views are expressed concerning thermal equilibrium in 
a RW universe. 
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